

CIELAB & ΔE — One-Page Cheat Sheet

1) What is CIELAB?

CIELAB ($L^*a^*b^*$) is a perceptually uniform, device-independent color space used for measurement and tolerance control.

2) L^* , a^* , b^* Axes

L^* : Lightness (0 = black, 100 = white)

a^* : Green (-) \leftrightarrow Red (+)

b^* : Blue (-) \leftrightarrow Yellow (+)

Neutral gray $\approx a^* = 0, b^* = 0$

3) How Lab Is Measured

Measured using a colorimeter or spectrophotometer under controlled illumination (commonly D65). Reflectance \rightarrow XYZ \rightarrow $L^*a^*b^*$.

4) Color Difference: ΔE

ΔE quantifies visible color difference between two Lab values. Lower ΔE = closer match.

ΔE Method	Use Case
ΔE^{*ab} (1976)	Legacy, simple math
$\Delta E94$	Graphic arts
$\Delta E00$ (CIEDE2000)	Modern industry standard

5) Visual Meaning of ΔE

ΔE Range	Visual Difference
< 1.0	Not perceptible
1 – 2	Barely perceptible (experts)
2 – 3	Noticeable
> 5	Obvious mismatch

6) Typical Engineering Specs

High-end optics & cosmetic parts: $\Delta E00 \leq 1.0$

Visible equipment panels: $\Delta E00 \leq 2.0$

Internal / non-cosmetic parts: $\Delta E00 \leq 3–5$

7) Best Practices

Always specify illuminant (D65), observer angle (2° or 10°), surface finish, measurement geometry, and ΔE method (prefer $\Delta E00$).

Rule of Thumb: Design in RGB, print in CMYK, inspect & control in Lab.